You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
312 lines
9.0 KiB
312 lines
9.0 KiB
2 years ago
|
<?php
|
||
|
// This file is part of Moodle - http://moodle.org/
|
||
|
//
|
||
|
// Moodle is free software: you can redistribute it and/or modify
|
||
|
// it under the terms of the GNU General Public License as published by
|
||
|
// the Free Software Foundation, either version 3 of the License, or
|
||
|
// (at your option) any later version.
|
||
|
//
|
||
|
// Moodle is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License
|
||
|
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
/**
|
||
|
* Base time splitting method.
|
||
|
*
|
||
|
* @package core_analytics
|
||
|
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
||
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
||
|
*/
|
||
|
|
||
|
namespace core_analytics\local\time_splitting;
|
||
|
|
||
|
defined('MOODLE_INTERNAL') || die();
|
||
|
|
||
|
/**
|
||
|
* Base time splitting method.
|
||
|
*
|
||
|
* @package core_analytics
|
||
|
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
||
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
||
|
*/
|
||
|
abstract class base {
|
||
|
|
||
|
/**
|
||
|
* @var string
|
||
|
*/
|
||
|
protected $id;
|
||
|
|
||
|
/**
|
||
|
* The model id.
|
||
|
*
|
||
|
* @var int
|
||
|
*/
|
||
|
protected $modelid;
|
||
|
|
||
|
/**
|
||
|
* @var \core_analytics\analysable
|
||
|
*/
|
||
|
protected $analysable;
|
||
|
|
||
|
/**
|
||
|
* @var array
|
||
|
*/
|
||
|
protected $ranges = [];
|
||
|
|
||
|
/**
|
||
|
* Define the time splitting methods ranges.
|
||
|
*
|
||
|
* 'time' value defines when predictions are executed, their values will be compared with
|
||
|
* the current time in ready_to_predict. The ranges should be sorted by 'time' in
|
||
|
* ascending order.
|
||
|
*
|
||
|
* @return array('start' => time(), 'end' => time(), 'time' => time())
|
||
|
*/
|
||
|
abstract protected function define_ranges();
|
||
|
|
||
|
/**
|
||
|
* Returns a lang_string object representing the name for the time splitting method.
|
||
|
*
|
||
|
* Used as column identificator.
|
||
|
*
|
||
|
* If there is a corresponding '_help' string this will be shown as well.
|
||
|
*
|
||
|
* @return \lang_string
|
||
|
*/
|
||
|
public static abstract function get_name() : \lang_string;
|
||
|
|
||
|
/**
|
||
|
* Returns the time splitting method id.
|
||
|
*
|
||
|
* @return string
|
||
|
*/
|
||
|
public function get_id() {
|
||
|
return '\\' . get_class($this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Assigns the analysable and updates the time ranges according to the analysable start and end dates.
|
||
|
*
|
||
|
* @param \core_analytics\analysable $analysable
|
||
|
* @return void
|
||
|
*/
|
||
|
public function set_analysable(\core_analytics\analysable $analysable) {
|
||
|
$this->analysable = $analysable;
|
||
|
$this->ranges = $this->define_ranges();
|
||
|
$this->validate_ranges();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Assigns the model id to this time-splitting method it case it needs it.
|
||
|
*
|
||
|
* @param int $modelid
|
||
|
*/
|
||
|
public function set_modelid(int $modelid) {
|
||
|
$this->modelid = $modelid;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* get_analysable
|
||
|
*
|
||
|
* @return \core_analytics\analysable
|
||
|
*/
|
||
|
public function get_analysable() {
|
||
|
return $this->analysable;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns whether the course can be processed by this time splitting method or not.
|
||
|
*
|
||
|
* @param \core_analytics\analysable $analysable
|
||
|
* @return bool
|
||
|
*/
|
||
|
public function is_valid_analysable(\core_analytics\analysable $analysable) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Should we predict this time range now?
|
||
|
*
|
||
|
* @param array $range
|
||
|
* @return bool
|
||
|
*/
|
||
|
public function ready_to_predict($range) {
|
||
|
if ($range['time'] <= time()) {
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Should we use this time range for training?
|
||
|
*
|
||
|
* @param array $range
|
||
|
* @return bool
|
||
|
*/
|
||
|
public function ready_to_train($range) {
|
||
|
$now = time();
|
||
|
if ($range['time'] <= $now && $range['end'] <= $now) {
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the ranges used by this time splitting method.
|
||
|
*
|
||
|
* @return array
|
||
|
*/
|
||
|
public function get_all_ranges() {
|
||
|
return $this->ranges;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* By default all ranges are for training.
|
||
|
*
|
||
|
* @return array
|
||
|
*/
|
||
|
public function get_training_ranges() {
|
||
|
return $this->ranges;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the distinct range indexes in this time splitting method.
|
||
|
*
|
||
|
* @return int[]
|
||
|
*/
|
||
|
public function get_distinct_ranges() {
|
||
|
if ($this->include_range_info_in_training_data()) {
|
||
|
return array_keys($this->ranges);
|
||
|
} else {
|
||
|
return [0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the most recent range that can be used to predict.
|
||
|
*
|
||
|
* This method is only called when calculating predictions.
|
||
|
*
|
||
|
* @return array
|
||
|
*/
|
||
|
public function get_most_recent_prediction_range() {
|
||
|
|
||
|
$ranges = $this->get_all_ranges();
|
||
|
|
||
|
// Opposite order as we are interested in the last range that can be used for prediction.
|
||
|
krsort($ranges);
|
||
|
|
||
|
// We already provided the analysable to the time splitting method, there is no need to feed it back.
|
||
|
foreach ($ranges as $rangeindex => $range) {
|
||
|
if ($this->ready_to_predict($range)) {
|
||
|
// We need to maintain the same indexes.
|
||
|
return array($rangeindex => $range);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return array();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns range data by its index.
|
||
|
*
|
||
|
* @param int $rangeindex
|
||
|
* @return array|false Range data or false if the index is not part of the existing ranges.
|
||
|
*/
|
||
|
public function get_range_by_index($rangeindex) {
|
||
|
if (!isset($this->ranges[$rangeindex])) {
|
||
|
return false;
|
||
|
}
|
||
|
return $this->ranges[$rangeindex];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generates a unique sample id (sample in a range index).
|
||
|
*
|
||
|
* @param int $sampleid
|
||
|
* @param int $rangeindex
|
||
|
* @return string
|
||
|
*/
|
||
|
public final function append_rangeindex($sampleid, $rangeindex) {
|
||
|
return $sampleid . '-' . $rangeindex;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the sample id and the range index from a uniquesampleid.
|
||
|
*
|
||
|
* @param string $uniquesampleid
|
||
|
* @return array array($sampleid, $rangeindex)
|
||
|
*/
|
||
|
public final function infer_sample_info($uniquesampleid) {
|
||
|
return explode('-', $uniquesampleid);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Whether to include the range index in the training data or not.
|
||
|
*
|
||
|
* By default, we consider that the different time ranges included in a time splitting method may not be
|
||
|
* compatible between them (i.e. the indicators calculated at the end of the course can easily
|
||
|
* differ from indicators calculated at the beginning of the course). So we include the range index as
|
||
|
* one of the variables that the machine learning backend uses to generate predictions.
|
||
|
*
|
||
|
* If the indicators calculated using the different time ranges available in this time splitting method
|
||
|
* are comparable you can overwrite this method to return false.
|
||
|
*
|
||
|
* Note that:
|
||
|
* - This is only relevant for models whose predictions are not based on assumptions
|
||
|
* (i.e. the ones using a machine learning backend to generate predictions).
|
||
|
* - The ranges can only be included in the training data when
|
||
|
* we know the final number of ranges the time splitting method will have. E.g.
|
||
|
* We can not know the final number of ranges of a 'daily' time splitting method
|
||
|
* as we will have one new range every day.
|
||
|
* @return bool
|
||
|
*/
|
||
|
public function include_range_info_in_training_data() {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Whether to cache or not the indicator calculations.
|
||
|
*
|
||
|
* Indicator calculations are stored to be reused across models. The calculations
|
||
|
* are indexed by the calculation start and end time, and these times depend on the
|
||
|
* time-splitting method. You should overwrite this method and return false if the time
|
||
|
* frames generated by your time-splitting method are unique and / or can hardly be
|
||
|
* reused by further models.
|
||
|
*
|
||
|
* @return bool
|
||
|
*/
|
||
|
public function cache_indicator_calculations(): bool {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Is this method valid to evaluate prediction models?
|
||
|
*
|
||
|
* @return bool
|
||
|
*/
|
||
|
public function valid_for_evaluation(): bool {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Validates the time splitting method ranges.
|
||
|
*
|
||
|
* @throws \coding_exception
|
||
|
* @return void
|
||
|
*/
|
||
|
protected function validate_ranges() {
|
||
|
foreach ($this->ranges as $key => $range) {
|
||
|
if (!isset($this->ranges[$key]['start']) || !isset($this->ranges[$key]['end']) ||
|
||
|
!isset($this->ranges[$key]['time'])) {
|
||
|
throw new \coding_exception($this->get_id() . ' time splitting method "' . $key .
|
||
|
'" range is not fully defined. We need a start timestamp and an end timestamp.');
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|