. /** * Abstract linear indicator. * * @package core_analytics * @copyright 2017 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ namespace core_analytics\local\indicator; defined('MOODLE_INTERNAL') || die(); /** * Abstract linear indicator. * * @package core_analytics * @copyright 2017 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ abstract class linear extends base { /** * Set to false to avoid context features to be added as dataset features. * * @return bool */ protected static function include_averages() { return true; } /** * get_feature_headers * * @return array */ public static function get_feature_headers() { $fullclassname = '\\' . get_called_class(); if (static::include_averages()) { // The calculated value + context indicators. $headers = array($fullclassname, $fullclassname . '/mean'); } else { $headers = array($fullclassname); } return $headers; } /** * Show only the main feature. * * @param float $value * @param string $subtype * @return bool */ public function should_be_displayed($value, $subtype) { if ($subtype != false) { return false; } return true; } /** * get_display_value * * @param float $value * @param string $subtype * @return string */ public function get_display_value($value, $subtype = false) { $diff = static::get_max_value() - static::get_min_value(); return round(100 * ($value - static::get_min_value()) / $diff) . '%'; } /** * get_calculation_outcome * * @param float $value * @param string $subtype * @return int */ public function get_calculation_outcome($value, $subtype = false) { if ($value < 0) { return self::OUTCOME_NEGATIVE; } else { return self::OUTCOME_OK; } } /** * Converts the calculated values to a list of features for the dataset. * * @param array $calculatedvalues * @return array */ protected function to_features($calculatedvalues) { // Null mean if all calculated values are null. $nullmean = true; foreach ($calculatedvalues as $value) { if (!is_null($value)) { // Early break, we don't want to spend a lot of time here. $nullmean = false; break; } } if ($nullmean) { $mean = null; } else { $mean = round(array_sum($calculatedvalues) / count($calculatedvalues), 2); } foreach ($calculatedvalues as $sampleid => $calculatedvalue) { if (!is_null($calculatedvalue)) { $calculatedvalue = round($calculatedvalue, 2); } if (static::include_averages()) { $calculatedvalues[$sampleid] = array($calculatedvalue, $mean); } else { // Basically just convert the scalar to an array of scalars with a single value. $calculatedvalues[$sampleid] = array($calculatedvalue); } } // Returns each sample as an array of values, appending the mean to the calculated value. return $calculatedvalues; } }