. /** * Abstract base target. * * @package core_analytics * @copyright 2016 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ namespace core_analytics\local\target; defined('MOODLE_INTERNAL') || die(); /** * Abstract base target. * * @package core_analytics * @copyright 2016 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ abstract class base extends \core_analytics\calculable { /** * This target have linear or discrete values. * * @return bool */ abstract public function is_linear(); /** * Returns the analyser class that should be used along with this target. * * @return string The full class name as a string */ abstract public function get_analyser_class(); /** * Allows the target to verify that the analysable is a good candidate. * * This method can be used as a quick way to discard invalid analysables. * e.g. Imagine that your analysable don't have students and you need them. * * @param \core_analytics\analysable $analysable * @param bool $fortraining * @return true|string */ abstract public function is_valid_analysable(\core_analytics\analysable $analysable, $fortraining = true); /** * Is this sample from the $analysable valid? * * @param int $sampleid * @param \core_analytics\analysable $analysable * @param bool $fortraining * @return bool */ abstract public function is_valid_sample($sampleid, \core_analytics\analysable $analysable, $fortraining = true); /** * Calculates this target for the provided samples. * * In case there are no values to return or the provided sample is not applicable just return null. * * @param int $sampleid * @param \core_analytics\analysable $analysable * @param int|false $starttime Limit calculations to start time * @param int|false $endtime Limit calculations to end time * @return float|null */ abstract protected function calculate_sample($sampleid, \core_analytics\analysable $analysable, $starttime = false, $endtime = false); /** * Is this target generating insights? * * Defaults to true. * * @return bool */ public static function uses_insights() { return true; } /** * Based on facts (processed by machine learning backends) by default. * * @return bool */ public static function based_on_assumptions() { return false; } /** * Update the last analysis time on analysable processed or always. * * If you overwrite this method to return false the last analysis time * will only be recorded in DB when the element successfully analysed. You can * safely return false for lightweight targets. * * @return bool */ public function always_update_analysis_time(): bool { return true; } /** * Suggested actions for a user. * * @param \core_analytics\prediction $prediction * @param bool $includedetailsaction * @param bool $isinsightuser * @return \core_analytics\prediction_action[] */ public function prediction_actions(\core_analytics\prediction $prediction, $includedetailsaction = false, $isinsightuser = false) { global $PAGE; $predictionid = $prediction->get_prediction_data()->id; $PAGE->requires->js_call_amd('report_insights/actions', 'init', array($predictionid)); $actions = array(); if ($includedetailsaction) { $predictionurl = new \moodle_url('/report/insights/prediction.php', array('id' => $predictionid)); $detailstext = $this->get_view_details_text(); $actions[] = new \core_analytics\prediction_action(\core_analytics\prediction::ACTION_PREDICTION_DETAILS, $prediction, $predictionurl, new \pix_icon('t/preview', $detailstext), $detailstext); } // Flag as fixed / solved. $fixedattrs = array( 'data-prediction-id' => $predictionid, 'data-prediction-methodname' => 'report_insights_set_fixed_prediction' ); $actions[] = new \core_analytics\prediction_action(\core_analytics\prediction::ACTION_FIXED, $prediction, new \moodle_url(''), new \pix_icon('t/check', get_string('fixedack', 'analytics')), get_string('fixedack', 'analytics'), false, $fixedattrs); // Flag as not useful. $notusefulattrs = array( 'data-prediction-id' => $predictionid, 'data-prediction-methodname' => 'report_insights_set_notuseful_prediction' ); $actions[] = new \core_analytics\prediction_action(\core_analytics\prediction::ACTION_NOT_USEFUL, $prediction, new \moodle_url(''), new \pix_icon('t/delete', get_string('notuseful', 'analytics')), get_string('notuseful', 'analytics'), false, $notusefulattrs); return $actions; } /** * Returns the view details link text. * @return string */ private function get_view_details_text() { if ($this->based_on_assumptions()) { $analyserclass = $this->get_analyser_class(); if ($analyserclass::one_sample_per_analysable()) { $detailstext = get_string('viewinsightdetails', 'analytics'); } else { $detailstext = get_string('viewdetails', 'analytics'); } } else { $detailstext = get_string('viewprediction', 'analytics'); } return $detailstext; } /** * Callback to execute once a prediction has been returned from the predictions processor. * * Note that the analytics_predictions db record is not yet inserted. * * @param int $modelid * @param int $sampleid * @param int $rangeindex * @param \context $samplecontext * @param float|int $prediction * @param float $predictionscore * @return void */ public function prediction_callback($modelid, $sampleid, $rangeindex, \context $samplecontext, $prediction, $predictionscore) { return; } /** * Generates insights notifications * * @param int $modelid * @param \context[] $samplecontexts * @param \core_analytics\prediction[] $predictions * @return void */ public function generate_insight_notifications($modelid, $samplecontexts, array $predictions = []) { // Delegate the processing of insights to the insights_generator. $insightsgenerator = new \core_analytics\insights_generator($modelid, $this); $insightsgenerator->generate($samplecontexts, $predictions); } /** * Returns the list of users that will receive insights notifications. * * Feel free to overwrite if you need to but keep in mind that moodle/analytics:listinsights * or moodle/analytics:listowninsights capability is required to access the list of insights. * * @param \context $context * @return array */ public function get_insights_users(\context $context) { if ($context->contextlevel === CONTEXT_USER) { $users = [$context->instanceid => \core_user::get_user($context->instanceid)]; } else if ($context->contextlevel >= CONTEXT_COURSE) { // At course level or below only enrolled users although this is not ideal for // teachers assigned at category level. $users = get_enrolled_users($context, 'moodle/analytics:listinsights'); } else { $users = get_users_by_capability($context, 'moodle/analytics:listinsights'); } return $users; } /** * URL to the insight. * * @param int $modelid * @param \context $context * @return \moodle_url */ public function get_insight_context_url($modelid, $context) { return new \moodle_url('/report/insights/insights.php?modelid=' . $modelid . '&contextid=' . $context->id); } /** * The insight notification subject. * * This is just a default message, you should overwrite it for a custom insight message. * * @param int $modelid * @param \context $context * @return string */ public function get_insight_subject(int $modelid, \context $context) { return get_string('insightmessagesubject', 'analytics', $context->get_context_name()); } /** * Returns an instance of the child class. * * Useful to reset cached data. * * @return \core_analytics\base\target */ public static function instance() { return new static(); } /** * Defines a boundary to ignore predictions below the specified prediction score. * * Value should go from 0 to 1. * * @return float */ protected function min_prediction_score() { // The default minimum discards predictions with a low score. return \core_analytics\model::PREDICTION_MIN_SCORE; } /** * This method determines if a prediction is interesing for the model or not. * * @param mixed $predictedvalue * @param float $predictionscore * @return bool */ public function triggers_callback($predictedvalue, $predictionscore) { $minscore = floatval($this->min_prediction_score()); if ($minscore < 0) { debugging(get_class($this) . ' minimum prediction score is below 0, please update it to a value between 0 and 1.'); } else if ($minscore > 1) { debugging(get_class($this) . ' minimum prediction score is above 1, please update it to a value between 0 and 1.'); } // We need to consider that targets may not have a min score. if (!empty($minscore) && floatval($predictionscore) < $minscore) { return false; } return true; } /** * Calculates the target. * * Returns an array of values which size matches $sampleids size. * * Rows with null values will be skipped as invalid by time splitting methods. * * @param array $sampleids * @param \core_analytics\analysable $analysable * @param int $starttime * @param int $endtime * @return array The format to follow is [userid] = scalar|null */ public function calculate($sampleids, \core_analytics\analysable $analysable, $starttime = false, $endtime = false) { if (!PHPUNIT_TEST && CLI_SCRIPT) { echo '.'; } $calculations = []; foreach ($sampleids as $sampleid => $unusedsampleid) { // No time limits when calculating the target to train models. $calculatedvalue = $this->calculate_sample($sampleid, $analysable, $starttime, $endtime); if (!is_null($calculatedvalue)) { if ($this->is_linear() && ($calculatedvalue > static::get_max_value() || $calculatedvalue < static::get_min_value())) { throw new \coding_exception('Calculated values should be higher than ' . static::get_min_value() . ' and lower than ' . static::get_max_value() . '. ' . $calculatedvalue . ' received'); } else if (!$this->is_linear() && static::is_a_class($calculatedvalue) === false) { throw new \coding_exception('Calculated values should be one of the target classes (' . json_encode(static::get_classes()) . '). ' . $calculatedvalue . ' received'); } } $calculations[$sampleid] = $calculatedvalue; } return $calculations; } /** * Filters out invalid samples for training. * * @param int[] $sampleids * @param \core_analytics\analysable $analysable * @param bool $fortraining * @return void */ public function filter_out_invalid_samples(&$sampleids, \core_analytics\analysable $analysable, $fortraining = true) { foreach ($sampleids as $sampleid => $unusedsampleid) { if (!$this->is_valid_sample($sampleid, $analysable, $fortraining)) { // Skip it and remove the sample from the list of calculated samples. unset($sampleids[$sampleid]); } } } }