. /** * Python predictions processor * * @package mlbackend_python * @copyright 2016 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ namespace mlbackend_python; defined('MOODLE_INTERNAL') || die(); /** * Python predictions processor. * * @package mlbackend_python * @copyright 2016 David Monllao {@link http://www.davidmonllao.com} * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later */ class processor implements \core_analytics\classifier, \core_analytics\regressor, \core_analytics\packable { /** * The required version of the python package that performs all calculations. */ const REQUIRED_PIP_PACKAGE_VERSION = '1.0.0'; /** * The path to the Python bin. * * @var string */ protected $pathtopython; /** * The constructor. */ public function __construct() { global $CFG; // Set the python location if there is a value. if (!empty($CFG->pathtopython)) { $this->pathtopython = $CFG->pathtopython; } } /** * Is the plugin ready to be used?. * * @return bool|string Returns true on success, a string detailing the error otherwise */ public function is_ready() { if (empty($this->pathtopython)) { $settingurl = new \moodle_url('/admin/settings.php', array('section' => 'systempaths')); return get_string('pythonpathnotdefined', 'mlbackend_python', $settingurl->out()); } // Check the installed pip package version. $cmd = "{$this->pathtopython} -m moodlemlbackend.version"; $output = null; $exitcode = null; // Execute it sending the standard error to $output. $result = exec($cmd . ' 2>&1', $output, $exitcode); $vercheck = self::check_pip_package_version($result); if ($vercheck === 0) { return true; } if ($exitcode != 0) { return get_string('pythonpackagenotinstalled', 'mlbackend_python', $cmd); } if ($result) { $a = [ 'installed' => $result, 'required' => self::REQUIRED_PIP_PACKAGE_VERSION, ]; if ($vercheck < 0) { return get_string('packageinstalledshouldbe', 'mlbackend_python', $a); } else if ($vercheck > 0) { return get_string('packageinstalledtoohigh', 'mlbackend_python', $a); } } return get_string('pythonpackagenotinstalled', 'mlbackend_python', $cmd); } /** * Delete the model version output directory. * * @param string $uniqueid * @param string $modelversionoutputdir * @return null */ public function clear_model($uniqueid, $modelversionoutputdir) { remove_dir($modelversionoutputdir); } /** * Delete the model output directory. * * @param string $modeloutputdir * @return null */ public function delete_output_dir($modeloutputdir) { remove_dir($modeloutputdir); } /** * Trains a machine learning algorithm with the provided dataset. * * @param string $uniqueid * @param \stored_file $dataset * @param string $outputdir * @return \stdClass */ public function train_classification($uniqueid, \stored_file $dataset, $outputdir) { // Obtain the physical route to the file. $datasetpath = $this->get_file_path($dataset); $cmd = "{$this->pathtopython} -m moodlemlbackend.training " . escapeshellarg($uniqueid) . ' ' . escapeshellarg($outputdir) . ' ' . escapeshellarg($datasetpath); if (!PHPUNIT_TEST && CLI_SCRIPT) { debugging($cmd, DEBUG_DEVELOPER); } $output = null; $exitcode = null; $result = exec($cmd, $output, $exitcode); if (!$result) { throw new \moodle_exception('errornopredictresults', 'analytics'); } if (!$resultobj = json_decode($result)) { throw new \moodle_exception('errorpredictwrongformat', 'analytics', '', json_last_error_msg()); } if ($exitcode != 0) { if (!empty($resultobj->errors)) { $errors = $resultobj->errors; if (is_array($errors)) { $errors = implode(', ', $errors); } } else if (!empty($resultobj->info)) { // Show info if no errors are returned. $errors = $resultobj->info; if (is_array($errors)) { $errors = implode(', ', $errors); } } $resultobj->info = array(get_string('errorpredictionsprocessor', 'analytics', $errors)); } return $resultobj; } /** * Classifies the provided dataset samples. * * @param string $uniqueid * @param \stored_file $dataset * @param string $outputdir * @return \stdClass */ public function classify($uniqueid, \stored_file $dataset, $outputdir) { // Obtain the physical route to the file. $datasetpath = $this->get_file_path($dataset); $cmd = "{$this->pathtopython} -m moodlemlbackend.prediction " . escapeshellarg($uniqueid) . ' ' . escapeshellarg($outputdir) . ' ' . escapeshellarg($datasetpath); if (!PHPUNIT_TEST && CLI_SCRIPT) { debugging($cmd, DEBUG_DEVELOPER); } $output = null; $exitcode = null; $result = exec($cmd, $output, $exitcode); if (!$result) { throw new \moodle_exception('errornopredictresults', 'analytics'); } if (!$resultobj = json_decode($result)) { throw new \moodle_exception('errorpredictwrongformat', 'analytics', '', json_last_error_msg()); } if ($exitcode != 0) { if (!empty($resultobj->errors)) { $errors = $resultobj->errors; if (is_array($errors)) { $errors = implode(', ', $errors); } } else if (!empty($resultobj->info)) { // Show info if no errors are returned. $errors = $resultobj->info; if (is_array($errors)) { $errors = implode(', ', $errors); } } $resultobj->info = array(get_string('errorpredictionsprocessor', 'analytics', $errors)); } return $resultobj; } /** * Evaluates this processor classification model using the provided supervised learning dataset. * * @param string $uniqueid * @param float $maxdeviation * @param int $niterations * @param \stored_file $dataset * @param string $outputdir * @param string $trainedmodeldir * @return \stdClass */ public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir, $trainedmodeldir) { // Obtain the physical route to the file. $datasetpath = $this->get_file_path($dataset); $cmd = "{$this->pathtopython} -m moodlemlbackend.evaluation " . escapeshellarg($uniqueid) . ' ' . escapeshellarg($outputdir) . ' ' . escapeshellarg($datasetpath) . ' ' . escapeshellarg(\core_analytics\model::MIN_SCORE) . ' ' . escapeshellarg($maxdeviation) . ' ' . escapeshellarg($niterations); if ($trainedmodeldir) { $cmd .= ' ' . escapeshellarg($trainedmodeldir); } if (!PHPUNIT_TEST && CLI_SCRIPT) { debugging($cmd, DEBUG_DEVELOPER); } $output = null; $exitcode = null; $result = exec($cmd, $output, $exitcode); if (!$result) { throw new \moodle_exception('errornopredictresults', 'analytics'); } if (!$resultobj = json_decode($result)) { throw new \moodle_exception('errorpredictwrongformat', 'analytics', '', json_last_error_msg()); } return $resultobj; } /** * Exports the machine learning model. * * @throws \moodle_exception * @param string $uniqueid The model unique id * @param string $modeldir The directory that contains the trained model. * @return string The path to the directory that contains the exported model. */ public function export(string $uniqueid, string $modeldir) : string { // We include an exporttmpdir as we want to be sure that the file is not deleted after the // python process finishes. $exporttmpdir = make_request_directory('mlbackend_python_export'); $cmd = "{$this->pathtopython} -m moodlemlbackend.export " . escapeshellarg($uniqueid) . ' ' . escapeshellarg($modeldir) . ' ' . escapeshellarg($exporttmpdir); if (!PHPUNIT_TEST && CLI_SCRIPT) { debugging($cmd, DEBUG_DEVELOPER); } $output = null; $exitcode = null; $exportdir = exec($cmd, $output, $exitcode); if ($exitcode != 0) { throw new \moodle_exception('errorexportmodelresult', 'analytics'); } if (!$exportdir) { throw new \moodle_exception('errorexportmodelresult', 'analytics'); } return $exportdir; } /** * Imports the provided machine learning model. * * @param string $uniqueid The model unique id * @param string $modeldir The directory that will contain the trained model. * @param string $importdir The directory that contains the files to import. * @return bool Success */ public function import(string $uniqueid, string $modeldir, string $importdir) : bool { $cmd = "{$this->pathtopython} -m moodlemlbackend.import " . escapeshellarg($uniqueid) . ' ' . escapeshellarg($modeldir) . ' ' . escapeshellarg($importdir); if (!PHPUNIT_TEST && CLI_SCRIPT) { debugging($cmd, DEBUG_DEVELOPER); } $output = null; $exitcode = null; $success = exec($cmd, $output, $exitcode); if ($exitcode != 0) { throw new \moodle_exception('errorimportmodelresult', 'analytics'); } if (!$success) { throw new \moodle_exception('errorimportmodelresult', 'analytics'); } return $success; } /** * Train this processor regression model using the provided supervised learning dataset. * * @throws new \coding_exception * @param string $uniqueid * @param \stored_file $dataset * @param string $outputdir * @return \stdClass */ public function train_regression($uniqueid, \stored_file $dataset, $outputdir) { throw new \coding_exception('This predictor does not support regression yet.'); } /** * Estimates linear values for the provided dataset samples. * * @throws new \coding_exception * @param string $uniqueid * @param \stored_file $dataset * @param mixed $outputdir * @return void */ public function estimate($uniqueid, \stored_file $dataset, $outputdir) { throw new \coding_exception('This predictor does not support regression yet.'); } /** * Evaluates this processor regression model using the provided supervised learning dataset. * * @throws new \coding_exception * @param string $uniqueid * @param float $maxdeviation * @param int $niterations * @param \stored_file $dataset * @param string $outputdir * @param string $trainedmodeldir * @return \stdClass */ public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset, $outputdir, $trainedmodeldir) { throw new \coding_exception('This predictor does not support regression yet.'); } /** * Returns the path to the dataset file. * * @param \stored_file $file * @return string */ protected function get_file_path(\stored_file $file) { // From moodle filesystem to the local file system. // This is not ideal, but there is no read access to moodle filesystem files. return $file->copy_content_to_temp('core_analytics'); } /** * Check that the given package version can be used and return the error status. * * When evaluating the version, we assume the sematic versioning scheme as described at * https://semver.org/. * * @param string $actual The actual Python package version * @param string $required The required version of the package * @return int -1 = actual version is too low, 1 = actual version too high, 0 = actual version is ok */ public static function check_pip_package_version($actual, $required = self::REQUIRED_PIP_PACKAGE_VERSION) { if (empty($actual)) { return -1; } if (version_compare($actual, $required, '<')) { return -1; } $parts = explode('.', $required); $requiredapiver = reset($parts); $parts = explode('.', $actual); $actualapiver = reset($parts); if ($requiredapiver > 0 || $actualapiver > 1) { if (version_compare($actual, $requiredapiver + 1, '>=')) { return 1; } } return 0; } }