You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

444 lines
14 KiB

<?php
// This file is part of Moodle - http://moodle.org/
//
// Moodle is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Moodle is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.
/**
* Python predictions processor
*
* @package mlbackend_python
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
*/
namespace mlbackend_python;
defined('MOODLE_INTERNAL') || die();
/**
* Python predictions processor.
*
* @package mlbackend_python
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
*/
class processor implements \core_analytics\classifier, \core_analytics\regressor, \core_analytics\packable {
/**
* The required version of the python package that performs all calculations.
*/
const REQUIRED_PIP_PACKAGE_VERSION = '1.0.0';
/**
* The path to the Python bin.
*
* @var string
*/
protected $pathtopython;
/**
* The constructor.
*/
public function __construct() {
global $CFG;
// Set the python location if there is a value.
if (!empty($CFG->pathtopython)) {
$this->pathtopython = $CFG->pathtopython;
}
}
/**
* Is the plugin ready to be used?.
*
* @return bool|string Returns true on success, a string detailing the error otherwise
*/
public function is_ready() {
if (empty($this->pathtopython)) {
$settingurl = new \moodle_url('/admin/settings.php', array('section' => 'systempaths'));
return get_string('pythonpathnotdefined', 'mlbackend_python', $settingurl->out());
}
// Check the installed pip package version.
$cmd = "{$this->pathtopython} -m moodlemlbackend.version";
$output = null;
$exitcode = null;
// Execute it sending the standard error to $output.
$result = exec($cmd . ' 2>&1', $output, $exitcode);
$vercheck = self::check_pip_package_version($result);
if ($vercheck === 0) {
return true;
}
if ($exitcode != 0) {
return get_string('pythonpackagenotinstalled', 'mlbackend_python', $cmd);
}
if ($result) {
$a = [
'installed' => $result,
'required' => self::REQUIRED_PIP_PACKAGE_VERSION,
];
if ($vercheck < 0) {
return get_string('packageinstalledshouldbe', 'mlbackend_python', $a);
} else if ($vercheck > 0) {
return get_string('packageinstalledtoohigh', 'mlbackend_python', $a);
}
}
return get_string('pythonpackagenotinstalled', 'mlbackend_python', $cmd);
}
/**
* Delete the model version output directory.
*
* @param string $uniqueid
* @param string $modelversionoutputdir
* @return null
*/
public function clear_model($uniqueid, $modelversionoutputdir) {
remove_dir($modelversionoutputdir);
}
/**
* Delete the model output directory.
*
* @param string $modeloutputdir
* @return null
*/
public function delete_output_dir($modeloutputdir) {
remove_dir($modeloutputdir);
}
/**
* Trains a machine learning algorithm with the provided dataset.
*
* @param string $uniqueid
* @param \stored_file $dataset
* @param string $outputdir
* @return \stdClass
*/
public function train_classification($uniqueid, \stored_file $dataset, $outputdir) {
// Obtain the physical route to the file.
$datasetpath = $this->get_file_path($dataset);
$cmd = "{$this->pathtopython} -m moodlemlbackend.training " .
escapeshellarg($uniqueid) . ' ' .
escapeshellarg($outputdir) . ' ' .
escapeshellarg($datasetpath);
if (!PHPUNIT_TEST && CLI_SCRIPT) {
debugging($cmd, DEBUG_DEVELOPER);
}
$output = null;
$exitcode = null;
$result = exec($cmd, $output, $exitcode);
if (!$result) {
throw new \moodle_exception('errornopredictresults', 'analytics');
}
if (!$resultobj = json_decode($result)) {
throw new \moodle_exception('errorpredictwrongformat', 'analytics', '', json_last_error_msg());
}
if ($exitcode != 0) {
if (!empty($resultobj->errors)) {
$errors = $resultobj->errors;
if (is_array($errors)) {
$errors = implode(', ', $errors);
}
} else if (!empty($resultobj->info)) {
// Show info if no errors are returned.
$errors = $resultobj->info;
if (is_array($errors)) {
$errors = implode(', ', $errors);
}
}
$resultobj->info = array(get_string('errorpredictionsprocessor', 'analytics', $errors));
}
return $resultobj;
}
/**
* Classifies the provided dataset samples.
*
* @param string $uniqueid
* @param \stored_file $dataset
* @param string $outputdir
* @return \stdClass
*/
public function classify($uniqueid, \stored_file $dataset, $outputdir) {
// Obtain the physical route to the file.
$datasetpath = $this->get_file_path($dataset);
$cmd = "{$this->pathtopython} -m moodlemlbackend.prediction " .
escapeshellarg($uniqueid) . ' ' .
escapeshellarg($outputdir) . ' ' .
escapeshellarg($datasetpath);
if (!PHPUNIT_TEST && CLI_SCRIPT) {
debugging($cmd, DEBUG_DEVELOPER);
}
$output = null;
$exitcode = null;
$result = exec($cmd, $output, $exitcode);
if (!$result) {
throw new \moodle_exception('errornopredictresults', 'analytics');
}
if (!$resultobj = json_decode($result)) {
throw new \moodle_exception('errorpredictwrongformat', 'analytics', '', json_last_error_msg());
}
if ($exitcode != 0) {
if (!empty($resultobj->errors)) {
$errors = $resultobj->errors;
if (is_array($errors)) {
$errors = implode(', ', $errors);
}
} else if (!empty($resultobj->info)) {
// Show info if no errors are returned.
$errors = $resultobj->info;
if (is_array($errors)) {
$errors = implode(', ', $errors);
}
}
$resultobj->info = array(get_string('errorpredictionsprocessor', 'analytics', $errors));
}
return $resultobj;
}
/**
* Evaluates this processor classification model using the provided supervised learning dataset.
*
* @param string $uniqueid
* @param float $maxdeviation
* @param int $niterations
* @param \stored_file $dataset
* @param string $outputdir
* @param string $trainedmodeldir
* @return \stdClass
*/
public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
$outputdir, $trainedmodeldir) {
// Obtain the physical route to the file.
$datasetpath = $this->get_file_path($dataset);
$cmd = "{$this->pathtopython} -m moodlemlbackend.evaluation " .
escapeshellarg($uniqueid) . ' ' .
escapeshellarg($outputdir) . ' ' .
escapeshellarg($datasetpath) . ' ' .
escapeshellarg(\core_analytics\model::MIN_SCORE) . ' ' .
escapeshellarg($maxdeviation) . ' ' .
escapeshellarg($niterations);
if ($trainedmodeldir) {
$cmd .= ' ' . escapeshellarg($trainedmodeldir);
}
if (!PHPUNIT_TEST && CLI_SCRIPT) {
debugging($cmd, DEBUG_DEVELOPER);
}
$output = null;
$exitcode = null;
$result = exec($cmd, $output, $exitcode);
if (!$result) {
throw new \moodle_exception('errornopredictresults', 'analytics');
}
if (!$resultobj = json_decode($result)) {
throw new \moodle_exception('errorpredictwrongformat', 'analytics', '', json_last_error_msg());
}
return $resultobj;
}
/**
* Exports the machine learning model.
*
* @throws \moodle_exception
* @param string $uniqueid The model unique id
* @param string $modeldir The directory that contains the trained model.
* @return string The path to the directory that contains the exported model.
*/
public function export(string $uniqueid, string $modeldir) : string {
// We include an exporttmpdir as we want to be sure that the file is not deleted after the
// python process finishes.
$exporttmpdir = make_request_directory('mlbackend_python_export');
$cmd = "{$this->pathtopython} -m moodlemlbackend.export " .
escapeshellarg($uniqueid) . ' ' .
escapeshellarg($modeldir) . ' ' .
escapeshellarg($exporttmpdir);
if (!PHPUNIT_TEST && CLI_SCRIPT) {
debugging($cmd, DEBUG_DEVELOPER);
}
$output = null;
$exitcode = null;
$exportdir = exec($cmd, $output, $exitcode);
if ($exitcode != 0) {
throw new \moodle_exception('errorexportmodelresult', 'analytics');
}
if (!$exportdir) {
throw new \moodle_exception('errorexportmodelresult', 'analytics');
}
return $exportdir;
}
/**
* Imports the provided machine learning model.
*
* @param string $uniqueid The model unique id
* @param string $modeldir The directory that will contain the trained model.
* @param string $importdir The directory that contains the files to import.
* @return bool Success
*/
public function import(string $uniqueid, string $modeldir, string $importdir) : bool {
$cmd = "{$this->pathtopython} -m moodlemlbackend.import " .
escapeshellarg($uniqueid) . ' ' .
escapeshellarg($modeldir) . ' ' .
escapeshellarg($importdir);
if (!PHPUNIT_TEST && CLI_SCRIPT) {
debugging($cmd, DEBUG_DEVELOPER);
}
$output = null;
$exitcode = null;
$success = exec($cmd, $output, $exitcode);
if ($exitcode != 0) {
throw new \moodle_exception('errorimportmodelresult', 'analytics');
}
if (!$success) {
throw new \moodle_exception('errorimportmodelresult', 'analytics');
}
return $success;
}
/**
* Train this processor regression model using the provided supervised learning dataset.
*
* @throws new \coding_exception
* @param string $uniqueid
* @param \stored_file $dataset
* @param string $outputdir
* @return \stdClass
*/
public function train_regression($uniqueid, \stored_file $dataset, $outputdir) {
throw new \coding_exception('This predictor does not support regression yet.');
}
/**
* Estimates linear values for the provided dataset samples.
*
* @throws new \coding_exception
* @param string $uniqueid
* @param \stored_file $dataset
* @param mixed $outputdir
* @return void
*/
public function estimate($uniqueid, \stored_file $dataset, $outputdir) {
throw new \coding_exception('This predictor does not support regression yet.');
}
/**
* Evaluates this processor regression model using the provided supervised learning dataset.
*
* @throws new \coding_exception
* @param string $uniqueid
* @param float $maxdeviation
* @param int $niterations
* @param \stored_file $dataset
* @param string $outputdir
* @param string $trainedmodeldir
* @return \stdClass
*/
public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
$outputdir, $trainedmodeldir) {
throw new \coding_exception('This predictor does not support regression yet.');
}
/**
* Returns the path to the dataset file.
*
* @param \stored_file $file
* @return string
*/
protected function get_file_path(\stored_file $file) {
// From moodle filesystem to the local file system.
// This is not ideal, but there is no read access to moodle filesystem files.
return $file->copy_content_to_temp('core_analytics');
}
/**
* Check that the given package version can be used and return the error status.
*
* When evaluating the version, we assume the sematic versioning scheme as described at
* https://semver.org/.
*
* @param string $actual The actual Python package version
* @param string $required The required version of the package
* @return int -1 = actual version is too low, 1 = actual version too high, 0 = actual version is ok
*/
public static function check_pip_package_version($actual, $required = self::REQUIRED_PIP_PACKAGE_VERSION) {
if (empty($actual)) {
return -1;
}
if (version_compare($actual, $required, '<')) {
return -1;
}
$parts = explode('.', $required);
$requiredapiver = reset($parts);
$parts = explode('.', $actual);
$actualapiver = reset($parts);
if ($requiredapiver > 0 || $actualapiver > 1) {
if (version_compare($actual, $requiredapiver + 1, '>=')) {
return 1;
}
}
return 0;
}
}