Sistema de Apoio ao Processo Legislativo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

75 lines
2.1 KiB

import random
import re
from collections import defaultdict
from string import digits
from django.apps import apps
from django.db.models.fields import CharField, TextField
from materia.models import Orgao, Origem
from norma.models import AssuntoNorma
from parlamentares.models import Municipio, NivelInstrucao, Partido
from sapl.settings import SAPL_APPS
sapl_appconfs = [apps.get_app_config(n) for n in SAPL_APPS]
models = [model for app in sapl_appconfs for model in app.get_models()]
excluidos = Origem, Orgao, AssuntoNorma, Partido, NivelInstrucao, Municipio,
models = [m for m in models
if 'tipo' not in m._meta.model_name and
'cargo' not in m._meta.model_name and
'status' not in m._meta.model_name and
m not in excluidos and
m._meta.app_label not in ['compilacao', 'base']]
nomes = [n.strip() for n in open('nomes.txt').readlines()]
conteudo = open('paragrafos.txt').read()
pars_list = [p.replace('"', '') for p in re.split('\n\n+', conteudo.strip())]
pars = defaultdict(list)
for p in pars_list:
pars[round(len(p) / 10)].append(p)
pars = dict(pars)
def change_digits(val):
return ''.join(random.choice(digits) if a in digits else a for a in val)
def random_text(val):
if not val or not val.strip():
return val
subpars = pars[min(pars.keys(),
key=lambda x: abs(x - round(len(val) / 10)))]
return random.choice(subpars)
def stub(f, obj):
val = getattr(obj, f.name)
if isinstance(f, CharField):
if 'mail' in f.name:
return 'bla@example.com'
elif 'nome' in f.name:
limite = f.max_length or 100000000
return random.choice(nomes)[:limite]
elif f.choices:
return val
else:
return change_digits(val)
if isinstance(f, TextField):
return random_text(val)
return val
def anon(model):
print('--------- %s ---------' % model)
for obj in model.objects.all():
for f in model._meta.fields:
setattr(obj, f.name, stub(f, obj))
obj.save()
def anon_todos():
for m in models:
anon(m)