You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
565 lines
19 KiB
565 lines
19 KiB
2 years ago
|
<?php
|
||
|
// This file is part of Moodle - http://moodle.org/
|
||
|
//
|
||
|
// Moodle is free software: you can redistribute it and/or modify
|
||
|
// it under the terms of the GNU General Public License as published by
|
||
|
// the Free Software Foundation, either version 3 of the License, or
|
||
|
// (at your option) any later version.
|
||
|
//
|
||
|
// Moodle is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License
|
||
|
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
/**
|
||
|
* Php predictions processor
|
||
|
*
|
||
|
* @package mlbackend_php
|
||
|
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
||
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
||
|
*/
|
||
|
|
||
|
namespace mlbackend_php;
|
||
|
|
||
|
defined('MOODLE_INTERNAL') || die();
|
||
|
|
||
|
use Phpml\Preprocessing\Normalizer;
|
||
|
use Phpml\CrossValidation\RandomSplit;
|
||
|
use Phpml\Dataset\ArrayDataset;
|
||
|
use Phpml\ModelManager;
|
||
|
|
||
|
/**
|
||
|
* PHP predictions processor.
|
||
|
*
|
||
|
* @package mlbackend_php
|
||
|
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
||
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
||
|
*/
|
||
|
class processor implements \core_analytics\classifier, \core_analytics\regressor, \core_analytics\packable {
|
||
|
|
||
|
/**
|
||
|
* Size of training / prediction batches.
|
||
|
*/
|
||
|
const BATCH_SIZE = 5000;
|
||
|
|
||
|
/**
|
||
|
* Number of train iterations.
|
||
|
*/
|
||
|
const TRAIN_ITERATIONS = 500;
|
||
|
|
||
|
/**
|
||
|
* File name of the serialised model.
|
||
|
*/
|
||
|
const MODEL_FILENAME = 'model.ser';
|
||
|
|
||
|
/**
|
||
|
* @var bool
|
||
|
*/
|
||
|
protected $limitedsize = false;
|
||
|
|
||
|
/**
|
||
|
* Checks if the processor is ready to use.
|
||
|
*
|
||
|
* @return bool
|
||
|
*/
|
||
|
public function is_ready() {
|
||
|
if (version_compare(phpversion(), '7.0.0') < 0) {
|
||
|
return get_string('errorphp7required', 'mlbackend_php');
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Delete the stored models.
|
||
|
*
|
||
|
* @param string $uniqueid
|
||
|
* @param string $modelversionoutputdir
|
||
|
* @return null
|
||
|
*/
|
||
|
public function clear_model($uniqueid, $modelversionoutputdir) {
|
||
|
remove_dir($modelversionoutputdir);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Delete the output directory.
|
||
|
*
|
||
|
* @param string $modeloutputdir
|
||
|
* @return null
|
||
|
*/
|
||
|
public function delete_output_dir($modeloutputdir) {
|
||
|
remove_dir($modeloutputdir);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Train this processor classification model using the provided supervised learning dataset.
|
||
|
*
|
||
|
* @param string $uniqueid
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function train_classification($uniqueid, \stored_file $dataset, $outputdir) {
|
||
|
|
||
|
$modelfilepath = $this->get_model_filepath($outputdir);
|
||
|
|
||
|
$modelmanager = new ModelManager();
|
||
|
|
||
|
if (file_exists($modelfilepath)) {
|
||
|
$classifier = $modelmanager->restoreFromFile($modelfilepath);
|
||
|
} else {
|
||
|
$classifier = new \Phpml\Classification\Linear\LogisticRegression(self::TRAIN_ITERATIONS, Normalizer::NORM_L2);
|
||
|
}
|
||
|
|
||
|
$fh = $dataset->get_content_file_handle();
|
||
|
|
||
|
// The first lines are var names and the second one values.
|
||
|
$metadata = $this->extract_metadata($fh);
|
||
|
|
||
|
// Skip headers.
|
||
|
fgets($fh);
|
||
|
|
||
|
$samples = array();
|
||
|
$targets = array();
|
||
|
while (($data = fgetcsv($fh)) !== false) {
|
||
|
$sampledata = array_map('floatval', $data);
|
||
|
$samples[] = array_slice($sampledata, 0, $metadata['nfeatures']);
|
||
|
$targets[] = intval($data[$metadata['nfeatures']]);
|
||
|
|
||
|
$nsamples = count($samples);
|
||
|
if ($nsamples === self::BATCH_SIZE) {
|
||
|
// Training it batches to avoid running out of memory.
|
||
|
|
||
|
$classifier->partialTrain($samples, $targets, array(0, 1));
|
||
|
$samples = array();
|
||
|
$targets = array();
|
||
|
}
|
||
|
if (empty($morethan1sample) && $nsamples > 1) {
|
||
|
$morethan1sample = true;
|
||
|
}
|
||
|
}
|
||
|
fclose($fh);
|
||
|
|
||
|
if (empty($morethan1sample)) {
|
||
|
$resultobj = new \stdClass();
|
||
|
$resultobj->status = \core_analytics\model::NO_DATASET;
|
||
|
$resultobj->info = array();
|
||
|
return $resultobj;
|
||
|
}
|
||
|
|
||
|
// Train the remaining samples.
|
||
|
if ($samples) {
|
||
|
$classifier->partialTrain($samples, $targets, array(0, 1));
|
||
|
}
|
||
|
|
||
|
$resultobj = new \stdClass();
|
||
|
$resultobj->status = \core_analytics\model::OK;
|
||
|
$resultobj->info = array();
|
||
|
|
||
|
// Store the trained model.
|
||
|
$modelmanager->saveToFile($classifier, $modelfilepath);
|
||
|
|
||
|
return $resultobj;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Classifies the provided dataset samples.
|
||
|
*
|
||
|
* @param string $uniqueid
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function classify($uniqueid, \stored_file $dataset, $outputdir) {
|
||
|
|
||
|
$classifier = $this->load_classifier($outputdir);
|
||
|
|
||
|
$fh = $dataset->get_content_file_handle();
|
||
|
|
||
|
// The first lines are var names and the second one values.
|
||
|
$metadata = $this->extract_metadata($fh);
|
||
|
|
||
|
// Skip headers.
|
||
|
fgets($fh);
|
||
|
|
||
|
$sampleids = array();
|
||
|
$samples = array();
|
||
|
$predictions = array();
|
||
|
while (($data = fgetcsv($fh)) !== false) {
|
||
|
$sampledata = array_map('floatval', $data);
|
||
|
$sampleids[] = $data[0];
|
||
|
$samples[] = array_slice($sampledata, 1, $metadata['nfeatures']);
|
||
|
|
||
|
if (count($samples) === self::BATCH_SIZE) {
|
||
|
// Prediction it batches to avoid running out of memory.
|
||
|
|
||
|
// Append predictions incrementally, we want $sampleids keys in sync with $predictions keys.
|
||
|
$newpredictions = $classifier->predict($samples);
|
||
|
foreach ($newpredictions as $prediction) {
|
||
|
array_push($predictions, $prediction);
|
||
|
}
|
||
|
$samples = array();
|
||
|
}
|
||
|
}
|
||
|
fclose($fh);
|
||
|
|
||
|
// Finish the remaining predictions.
|
||
|
if ($samples) {
|
||
|
$predictions = $predictions + $classifier->predict($samples);
|
||
|
}
|
||
|
|
||
|
$resultobj = new \stdClass();
|
||
|
$resultobj->status = \core_analytics\model::OK;
|
||
|
$resultobj->info = array();
|
||
|
|
||
|
foreach ($predictions as $index => $prediction) {
|
||
|
$resultobj->predictions[$index] = array($sampleids[$index], $prediction);
|
||
|
}
|
||
|
|
||
|
return $resultobj;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Evaluates this processor classification model using the provided supervised learning dataset.
|
||
|
*
|
||
|
* During evaluation we need to shuffle the evaluation dataset samples to detect deviated results,
|
||
|
* if the dataset is massive we can not load everything into memory. We know that 2GB is the
|
||
|
* minimum memory limit we should have (\core_analytics\model::heavy_duty_mode), if we substract the memory
|
||
|
* that we already consumed and the memory that Phpml algorithms will need we should still have at
|
||
|
* least 500MB of memory, which should be enough to evaluate a model. In any case this is a robust
|
||
|
* solution that will work for all sites but it should minimize memory limit problems. Site admins
|
||
|
* can still set $CFG->mlbackend_php_no_evaluation_limits to true to skip this 500MB limit.
|
||
|
*
|
||
|
* @param string $uniqueid
|
||
|
* @param float $maxdeviation
|
||
|
* @param int $niterations
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @param string $trainedmodeldir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
|
||
|
$outputdir, $trainedmodeldir) {
|
||
|
$fh = $dataset->get_content_file_handle();
|
||
|
|
||
|
if ($trainedmodeldir) {
|
||
|
// We overwrite the number of iterations as the results will always be the same.
|
||
|
$niterations = 1;
|
||
|
$classifier = $this->load_classifier($trainedmodeldir);
|
||
|
}
|
||
|
|
||
|
// The first lines are var names and the second one values.
|
||
|
$metadata = $this->extract_metadata($fh);
|
||
|
|
||
|
// Skip headers.
|
||
|
fgets($fh);
|
||
|
|
||
|
if (empty($CFG->mlbackend_php_no_evaluation_limits)) {
|
||
|
$samplessize = 0;
|
||
|
$limit = get_real_size('500MB');
|
||
|
|
||
|
// Just an approximation, will depend on PHP version, compile options...
|
||
|
// Double size + zval struct (6 bytes + 8 bytes + 16 bytes) + array bucket (96 bytes)
|
||
|
// https://nikic.github.io/2011/12/12/How-big-are-PHP-arrays-really-Hint-BIG.html.
|
||
|
$floatsize = (PHP_INT_SIZE * 2) + 6 + 8 + 16 + 96;
|
||
|
}
|
||
|
|
||
|
$samples = array();
|
||
|
$targets = array();
|
||
|
while (($data = fgetcsv($fh)) !== false) {
|
||
|
$sampledata = array_map('floatval', $data);
|
||
|
|
||
|
$samples[] = array_slice($sampledata, 0, $metadata['nfeatures']);
|
||
|
$targets[] = intval($data[$metadata['nfeatures']]);
|
||
|
|
||
|
if (empty($CFG->mlbackend_php_no_evaluation_limits)) {
|
||
|
// We allow admins to disable evaluation memory usage limits by modifying config.php.
|
||
|
|
||
|
// We will have plenty of missing values in the dataset so it should be a conservative approximation.
|
||
|
$samplessize = $samplessize + (count($sampledata) * $floatsize);
|
||
|
|
||
|
// Stop fetching more samples.
|
||
|
if ($samplessize >= $limit) {
|
||
|
$this->limitedsize = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
fclose($fh);
|
||
|
|
||
|
// We need at least 2 samples belonging to each target.
|
||
|
$counts = array_count_values($targets);
|
||
|
$ntargets = count(explode(',', $metadata['targetclasses']));
|
||
|
foreach ($counts as $count) {
|
||
|
if ($count < 2) {
|
||
|
$notenoughdata = true;
|
||
|
}
|
||
|
}
|
||
|
if ($ntargets > count($counts)) {
|
||
|
$notenoughdata = true;
|
||
|
}
|
||
|
if (!empty($notenoughdata)) {
|
||
|
$resultobj = new \stdClass();
|
||
|
$resultobj->status = \core_analytics\model::NOT_ENOUGH_DATA;
|
||
|
$resultobj->score = 0;
|
||
|
$resultobj->info = array(get_string('errornotenoughdata', 'mlbackend_php'));
|
||
|
return $resultobj;
|
||
|
}
|
||
|
|
||
|
$phis = array();
|
||
|
|
||
|
// Evaluate the model multiple times to confirm the results are not significantly random due to a short amount of data.
|
||
|
for ($i = 0; $i < $niterations; $i++) {
|
||
|
|
||
|
if (!$trainedmodeldir) {
|
||
|
$classifier = new \Phpml\Classification\Linear\LogisticRegression(self::TRAIN_ITERATIONS, Normalizer::NORM_L2);
|
||
|
|
||
|
// Split up the dataset in classifier and testing.
|
||
|
$data = new RandomSplit(new ArrayDataset($samples, $targets), 0.2);
|
||
|
|
||
|
$classifier->train($data->getTrainSamples(), $data->getTrainLabels());
|
||
|
$predictedlabels = $classifier->predict($data->getTestSamples());
|
||
|
$phis[] = $this->get_phi($data->getTestLabels(), $predictedlabels);
|
||
|
} else {
|
||
|
$predictedlabels = $classifier->predict($samples);
|
||
|
$phis[] = $this->get_phi($targets, $predictedlabels);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Let's fill the results changing the returned status code depending on the phi-related calculated metrics.
|
||
|
return $this->get_evaluation_result_object($dataset, $phis, $maxdeviation);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the results objects from all evaluations.
|
||
|
*
|
||
|
* @param \stored_file $dataset
|
||
|
* @param array $phis
|
||
|
* @param float $maxdeviation
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
protected function get_evaluation_result_object(\stored_file $dataset, $phis, $maxdeviation) {
|
||
|
|
||
|
// Average phi of all evaluations as final score.
|
||
|
if (count($phis) === 1) {
|
||
|
$avgphi = reset($phis);
|
||
|
} else {
|
||
|
$avgphi = \Phpml\Math\Statistic\Mean::arithmetic($phis);
|
||
|
}
|
||
|
|
||
|
// Standard deviation should ideally be calculated against the area under the curve.
|
||
|
if (count($phis) === 1) {
|
||
|
$modeldev = 0;
|
||
|
} else {
|
||
|
$modeldev = \Phpml\Math\Statistic\StandardDeviation::population($phis);
|
||
|
}
|
||
|
|
||
|
// Let's fill the results object.
|
||
|
$resultobj = new \stdClass();
|
||
|
|
||
|
// Zero is ok, now we add other bits if something is not right.
|
||
|
$resultobj->status = \core_analytics\model::OK;
|
||
|
$resultobj->info = array();
|
||
|
|
||
|
// Convert phi to a standard score (from -1 to 1 to a value between 0 and 1).
|
||
|
$resultobj->score = ($avgphi + 1) / 2;
|
||
|
|
||
|
// If each iteration results varied too much we need more data to confirm that this is a valid model.
|
||
|
if ($modeldev > $maxdeviation) {
|
||
|
$resultobj->status = $resultobj->status + \core_analytics\model::NOT_ENOUGH_DATA;
|
||
|
$a = new \stdClass();
|
||
|
$a->deviation = $modeldev;
|
||
|
$a->accepteddeviation = $maxdeviation;
|
||
|
$resultobj->info[] = get_string('errornotenoughdatadev', 'mlbackend_php', $a);
|
||
|
}
|
||
|
|
||
|
if ($resultobj->score < \core_analytics\model::MIN_SCORE) {
|
||
|
$resultobj->status = $resultobj->status + \core_analytics\model::LOW_SCORE;
|
||
|
$a = new \stdClass();
|
||
|
$a->score = $resultobj->score;
|
||
|
$a->minscore = \core_analytics\model::MIN_SCORE;
|
||
|
$resultobj->info[] = get_string('errorlowscore', 'mlbackend_php', $a);
|
||
|
}
|
||
|
|
||
|
if ($this->limitedsize === true) {
|
||
|
$resultobj->info[] = get_string('datasetsizelimited', 'mlbackend_php', display_size($dataset->get_filesize()));
|
||
|
}
|
||
|
|
||
|
return $resultobj;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Loads the pre-trained classifier.
|
||
|
*
|
||
|
* @throws \moodle_exception
|
||
|
* @param string $outputdir
|
||
|
* @return \Phpml\Classification\Linear\LogisticRegression
|
||
|
*/
|
||
|
protected function load_classifier($outputdir) {
|
||
|
$modelfilepath = $this->get_model_filepath($outputdir);
|
||
|
|
||
|
if (!file_exists($modelfilepath)) {
|
||
|
throw new \moodle_exception('errorcantloadmodel', 'mlbackend_php', '', $modelfilepath);
|
||
|
}
|
||
|
|
||
|
$modelmanager = new ModelManager();
|
||
|
return $modelmanager->restoreFromFile($modelfilepath);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Train this processor regression model using the provided supervised learning dataset.
|
||
|
*
|
||
|
* @throws new \coding_exception
|
||
|
* @param string $uniqueid
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function train_regression($uniqueid, \stored_file $dataset, $outputdir) {
|
||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Estimates linear values for the provided dataset samples.
|
||
|
*
|
||
|
* @throws new \coding_exception
|
||
|
* @param string $uniqueid
|
||
|
* @param \stored_file $dataset
|
||
|
* @param mixed $outputdir
|
||
|
* @return void
|
||
|
*/
|
||
|
public function estimate($uniqueid, \stored_file $dataset, $outputdir) {
|
||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Evaluates this processor regression model using the provided supervised learning dataset.
|
||
|
*
|
||
|
* @throws new \coding_exception
|
||
|
* @param string $uniqueid
|
||
|
* @param float $maxdeviation
|
||
|
* @param int $niterations
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @param string $trainedmodeldir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
|
||
|
$outputdir, $trainedmodeldir) {
|
||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Exports the machine learning model.
|
||
|
*
|
||
|
* @throws \moodle_exception
|
||
|
* @param string $uniqueid The model unique id
|
||
|
* @param string $modeldir The directory that contains the trained model.
|
||
|
* @return string The path to the directory that contains the exported model.
|
||
|
*/
|
||
|
public function export(string $uniqueid, string $modeldir) : string {
|
||
|
|
||
|
$modelfilepath = $this->get_model_filepath($modeldir);
|
||
|
|
||
|
if (!file_exists($modelfilepath)) {
|
||
|
throw new \moodle_exception('errorexportmodelresult', 'analytics');
|
||
|
}
|
||
|
|
||
|
// We can use the actual $modeldir as the directory is not modified during export, just copied into a zip.
|
||
|
return $modeldir;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Imports the provided machine learning model.
|
||
|
*
|
||
|
* @param string $uniqueid The model unique id
|
||
|
* @param string $modeldir The directory that will contain the trained model.
|
||
|
* @param string $importdir The directory that contains the files to import.
|
||
|
* @return bool Success
|
||
|
*/
|
||
|
public function import(string $uniqueid, string $modeldir, string $importdir) : bool {
|
||
|
|
||
|
$importmodelfilepath = $this->get_model_filepath($importdir);
|
||
|
$modelfilepath = $this->get_model_filepath($modeldir);
|
||
|
|
||
|
$modelmanager = new ModelManager();
|
||
|
|
||
|
// Copied from ModelManager::restoreFromFile to validate the serialised contents
|
||
|
// before restoring them.
|
||
|
$importconfig = file_get_contents($importmodelfilepath);
|
||
|
|
||
|
// Clean stuff like function calls.
|
||
|
$importconfig = preg_replace('/[^a-zA-Z0-9\{\}%\.\*\;\,\:\"\-\0\\\]/', '', $importconfig);
|
||
|
|
||
|
$object = unserialize($importconfig,
|
||
|
['allowed_classes' => ['Phpml\\Classification\\Linear\\LogisticRegression']]);
|
||
|
if (!$object) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (get_class($object) == '__PHP_Incomplete_Class') {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
$classifier = $modelmanager->restoreFromFile($importmodelfilepath);
|
||
|
|
||
|
// This would override any previous classifier.
|
||
|
$modelmanager->saveToFile($classifier, $modelfilepath);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the path to the serialised model file in the provided directory.
|
||
|
*
|
||
|
* @param string $modeldir The model directory
|
||
|
* @return string The model file
|
||
|
*/
|
||
|
protected function get_model_filepath(string $modeldir) : string {
|
||
|
// Output directory is already unique to the model.
|
||
|
return $modeldir . DIRECTORY_SEPARATOR . self::MODEL_FILENAME;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the Phi correlation coefficient.
|
||
|
*
|
||
|
* @param array $testlabels
|
||
|
* @param array $predictedlabels
|
||
|
* @return float
|
||
|
*/
|
||
|
protected function get_phi($testlabels, $predictedlabels) {
|
||
|
|
||
|
// Binary here only as well.
|
||
|
$matrix = \Phpml\Metric\ConfusionMatrix::compute($testlabels, $predictedlabels, array(0, 1));
|
||
|
|
||
|
$tptn = $matrix[0][0] * $matrix[1][1];
|
||
|
$fpfn = $matrix[1][0] * $matrix[0][1];
|
||
|
$tpfp = $matrix[0][0] + $matrix[1][0];
|
||
|
$tpfn = $matrix[0][0] + $matrix[0][1];
|
||
|
$tnfp = $matrix[1][1] + $matrix[1][0];
|
||
|
$tnfn = $matrix[1][1] + $matrix[0][1];
|
||
|
if ($tpfp === 0 || $tpfn === 0 || $tnfp === 0 || $tnfn === 0) {
|
||
|
$phi = 0;
|
||
|
} else {
|
||
|
$phi = ( $tptn - $fpfn ) / sqrt( $tpfp * $tpfn * $tnfp * $tnfn);
|
||
|
}
|
||
|
|
||
|
return $phi;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Extracts metadata from the dataset file.
|
||
|
*
|
||
|
* The file poiter should be located at the top of the file.
|
||
|
*
|
||
|
* @param resource $fh
|
||
|
* @return array
|
||
|
*/
|
||
|
protected function extract_metadata($fh) {
|
||
|
$metadata = fgetcsv($fh);
|
||
|
return array_combine($metadata, fgetcsv($fh));
|
||
|
}
|
||
|
}
|