You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

564 lines
19 KiB

<?php
// This file is part of Moodle - http://moodle.org/
//
// Moodle is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Moodle is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.
/**
* Php predictions processor
*
* @package mlbackend_php
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
*/
namespace mlbackend_php;
defined('MOODLE_INTERNAL') || die();
use Phpml\Preprocessing\Normalizer;
use Phpml\CrossValidation\RandomSplit;
use Phpml\Dataset\ArrayDataset;
use Phpml\ModelManager;
/**
* PHP predictions processor.
*
* @package mlbackend_php
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
*/
class processor implements \core_analytics\classifier, \core_analytics\regressor, \core_analytics\packable {
/**
* Size of training / prediction batches.
*/
const BATCH_SIZE = 5000;
/**
* Number of train iterations.
*/
const TRAIN_ITERATIONS = 500;
/**
* File name of the serialised model.
*/
const MODEL_FILENAME = 'model.ser';
/**
* @var bool
*/
protected $limitedsize = false;
/**
* Checks if the processor is ready to use.
*
* @return bool
*/
public function is_ready() {
if (version_compare(phpversion(), '7.0.0') < 0) {
return get_string('errorphp7required', 'mlbackend_php');
}
return true;
}
/**
* Delete the stored models.
*
* @param string $uniqueid
* @param string $modelversionoutputdir
* @return null
*/
public function clear_model($uniqueid, $modelversionoutputdir) {
remove_dir($modelversionoutputdir);
}
/**
* Delete the output directory.
*
* @param string $modeloutputdir
* @return null
*/
public function delete_output_dir($modeloutputdir) {
remove_dir($modeloutputdir);
}
/**
* Train this processor classification model using the provided supervised learning dataset.
*
* @param string $uniqueid
* @param \stored_file $dataset
* @param string $outputdir
* @return \stdClass
*/
public function train_classification($uniqueid, \stored_file $dataset, $outputdir) {
$modelfilepath = $this->get_model_filepath($outputdir);
$modelmanager = new ModelManager();
if (file_exists($modelfilepath)) {
$classifier = $modelmanager->restoreFromFile($modelfilepath);
} else {
$classifier = new \Phpml\Classification\Linear\LogisticRegression(self::TRAIN_ITERATIONS, Normalizer::NORM_L2);
}
$fh = $dataset->get_content_file_handle();
// The first lines are var names and the second one values.
$metadata = $this->extract_metadata($fh);
// Skip headers.
fgets($fh);
$samples = array();
$targets = array();
while (($data = fgetcsv($fh)) !== false) {
$sampledata = array_map('floatval', $data);
$samples[] = array_slice($sampledata, 0, $metadata['nfeatures']);
$targets[] = intval($data[$metadata['nfeatures']]);
$nsamples = count($samples);
if ($nsamples === self::BATCH_SIZE) {
// Training it batches to avoid running out of memory.
$classifier->partialTrain($samples, $targets, array(0, 1));
$samples = array();
$targets = array();
}
if (empty($morethan1sample) && $nsamples > 1) {
$morethan1sample = true;
}
}
fclose($fh);
if (empty($morethan1sample)) {
$resultobj = new \stdClass();
$resultobj->status = \core_analytics\model::NO_DATASET;
$resultobj->info = array();
return $resultobj;
}
// Train the remaining samples.
if ($samples) {
$classifier->partialTrain($samples, $targets, array(0, 1));
}
$resultobj = new \stdClass();
$resultobj->status = \core_analytics\model::OK;
$resultobj->info = array();
// Store the trained model.
$modelmanager->saveToFile($classifier, $modelfilepath);
return $resultobj;
}
/**
* Classifies the provided dataset samples.
*
* @param string $uniqueid
* @param \stored_file $dataset
* @param string $outputdir
* @return \stdClass
*/
public function classify($uniqueid, \stored_file $dataset, $outputdir) {
$classifier = $this->load_classifier($outputdir);
$fh = $dataset->get_content_file_handle();
// The first lines are var names and the second one values.
$metadata = $this->extract_metadata($fh);
// Skip headers.
fgets($fh);
$sampleids = array();
$samples = array();
$predictions = array();
while (($data = fgetcsv($fh)) !== false) {
$sampledata = array_map('floatval', $data);
$sampleids[] = $data[0];
$samples[] = array_slice($sampledata, 1, $metadata['nfeatures']);
if (count($samples) === self::BATCH_SIZE) {
// Prediction it batches to avoid running out of memory.
// Append predictions incrementally, we want $sampleids keys in sync with $predictions keys.
$newpredictions = $classifier->predict($samples);
foreach ($newpredictions as $prediction) {
array_push($predictions, $prediction);
}
$samples = array();
}
}
fclose($fh);
// Finish the remaining predictions.
if ($samples) {
$predictions = $predictions + $classifier->predict($samples);
}
$resultobj = new \stdClass();
$resultobj->status = \core_analytics\model::OK;
$resultobj->info = array();
foreach ($predictions as $index => $prediction) {
$resultobj->predictions[$index] = array($sampleids[$index], $prediction);
}
return $resultobj;
}
/**
* Evaluates this processor classification model using the provided supervised learning dataset.
*
* During evaluation we need to shuffle the evaluation dataset samples to detect deviated results,
* if the dataset is massive we can not load everything into memory. We know that 2GB is the
* minimum memory limit we should have (\core_analytics\model::heavy_duty_mode), if we substract the memory
* that we already consumed and the memory that Phpml algorithms will need we should still have at
* least 500MB of memory, which should be enough to evaluate a model. In any case this is a robust
* solution that will work for all sites but it should minimize memory limit problems. Site admins
* can still set $CFG->mlbackend_php_no_evaluation_limits to true to skip this 500MB limit.
*
* @param string $uniqueid
* @param float $maxdeviation
* @param int $niterations
* @param \stored_file $dataset
* @param string $outputdir
* @param string $trainedmodeldir
* @return \stdClass
*/
public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
$outputdir, $trainedmodeldir) {
$fh = $dataset->get_content_file_handle();
if ($trainedmodeldir) {
// We overwrite the number of iterations as the results will always be the same.
$niterations = 1;
$classifier = $this->load_classifier($trainedmodeldir);
}
// The first lines are var names and the second one values.
$metadata = $this->extract_metadata($fh);
// Skip headers.
fgets($fh);
if (empty($CFG->mlbackend_php_no_evaluation_limits)) {
$samplessize = 0;
$limit = get_real_size('500MB');
// Just an approximation, will depend on PHP version, compile options...
// Double size + zval struct (6 bytes + 8 bytes + 16 bytes) + array bucket (96 bytes)
// https://nikic.github.io/2011/12/12/How-big-are-PHP-arrays-really-Hint-BIG.html.
$floatsize = (PHP_INT_SIZE * 2) + 6 + 8 + 16 + 96;
}
$samples = array();
$targets = array();
while (($data = fgetcsv($fh)) !== false) {
$sampledata = array_map('floatval', $data);
$samples[] = array_slice($sampledata, 0, $metadata['nfeatures']);
$targets[] = intval($data[$metadata['nfeatures']]);
if (empty($CFG->mlbackend_php_no_evaluation_limits)) {
// We allow admins to disable evaluation memory usage limits by modifying config.php.
// We will have plenty of missing values in the dataset so it should be a conservative approximation.
$samplessize = $samplessize + (count($sampledata) * $floatsize);
// Stop fetching more samples.
if ($samplessize >= $limit) {
$this->limitedsize = true;
break;
}
}
}
fclose($fh);
// We need at least 2 samples belonging to each target.
$counts = array_count_values($targets);
$ntargets = count(explode(',', $metadata['targetclasses']));
foreach ($counts as $count) {
if ($count < 2) {
$notenoughdata = true;
}
}
if ($ntargets > count($counts)) {
$notenoughdata = true;
}
if (!empty($notenoughdata)) {
$resultobj = new \stdClass();
$resultobj->status = \core_analytics\model::NOT_ENOUGH_DATA;
$resultobj->score = 0;
$resultobj->info = array(get_string('errornotenoughdata', 'mlbackend_php'));
return $resultobj;
}
$phis = array();
// Evaluate the model multiple times to confirm the results are not significantly random due to a short amount of data.
for ($i = 0; $i < $niterations; $i++) {
if (!$trainedmodeldir) {
$classifier = new \Phpml\Classification\Linear\LogisticRegression(self::TRAIN_ITERATIONS, Normalizer::NORM_L2);
// Split up the dataset in classifier and testing.
$data = new RandomSplit(new ArrayDataset($samples, $targets), 0.2);
$classifier->train($data->getTrainSamples(), $data->getTrainLabels());
$predictedlabels = $classifier->predict($data->getTestSamples());
$phis[] = $this->get_phi($data->getTestLabels(), $predictedlabels);
} else {
$predictedlabels = $classifier->predict($samples);
$phis[] = $this->get_phi($targets, $predictedlabels);
}
}
// Let's fill the results changing the returned status code depending on the phi-related calculated metrics.
return $this->get_evaluation_result_object($dataset, $phis, $maxdeviation);
}
/**
* Returns the results objects from all evaluations.
*
* @param \stored_file $dataset
* @param array $phis
* @param float $maxdeviation
* @return \stdClass
*/
protected function get_evaluation_result_object(\stored_file $dataset, $phis, $maxdeviation) {
// Average phi of all evaluations as final score.
if (count($phis) === 1) {
$avgphi = reset($phis);
} else {
$avgphi = \Phpml\Math\Statistic\Mean::arithmetic($phis);
}
// Standard deviation should ideally be calculated against the area under the curve.
if (count($phis) === 1) {
$modeldev = 0;
} else {
$modeldev = \Phpml\Math\Statistic\StandardDeviation::population($phis);
}
// Let's fill the results object.
$resultobj = new \stdClass();
// Zero is ok, now we add other bits if something is not right.
$resultobj->status = \core_analytics\model::OK;
$resultobj->info = array();
// Convert phi to a standard score (from -1 to 1 to a value between 0 and 1).
$resultobj->score = ($avgphi + 1) / 2;
// If each iteration results varied too much we need more data to confirm that this is a valid model.
if ($modeldev > $maxdeviation) {
$resultobj->status = $resultobj->status + \core_analytics\model::NOT_ENOUGH_DATA;
$a = new \stdClass();
$a->deviation = $modeldev;
$a->accepteddeviation = $maxdeviation;
$resultobj->info[] = get_string('errornotenoughdatadev', 'mlbackend_php', $a);
}
if ($resultobj->score < \core_analytics\model::MIN_SCORE) {
$resultobj->status = $resultobj->status + \core_analytics\model::LOW_SCORE;
$a = new \stdClass();
$a->score = $resultobj->score;
$a->minscore = \core_analytics\model::MIN_SCORE;
$resultobj->info[] = get_string('errorlowscore', 'mlbackend_php', $a);
}
if ($this->limitedsize === true) {
$resultobj->info[] = get_string('datasetsizelimited', 'mlbackend_php', display_size($dataset->get_filesize()));
}
return $resultobj;
}
/**
* Loads the pre-trained classifier.
*
* @throws \moodle_exception
* @param string $outputdir
* @return \Phpml\Classification\Linear\LogisticRegression
*/
protected function load_classifier($outputdir) {
$modelfilepath = $this->get_model_filepath($outputdir);
if (!file_exists($modelfilepath)) {
throw new \moodle_exception('errorcantloadmodel', 'mlbackend_php', '', $modelfilepath);
}
$modelmanager = new ModelManager();
return $modelmanager->restoreFromFile($modelfilepath);
}
/**
* Train this processor regression model using the provided supervised learning dataset.
*
* @throws new \coding_exception
* @param string $uniqueid
* @param \stored_file $dataset
* @param string $outputdir
* @return \stdClass
*/
public function train_regression($uniqueid, \stored_file $dataset, $outputdir) {
throw new \coding_exception('This predictor does not support regression yet.');
}
/**
* Estimates linear values for the provided dataset samples.
*
* @throws new \coding_exception
* @param string $uniqueid
* @param \stored_file $dataset
* @param mixed $outputdir
* @return void
*/
public function estimate($uniqueid, \stored_file $dataset, $outputdir) {
throw new \coding_exception('This predictor does not support regression yet.');
}
/**
* Evaluates this processor regression model using the provided supervised learning dataset.
*
* @throws new \coding_exception
* @param string $uniqueid
* @param float $maxdeviation
* @param int $niterations
* @param \stored_file $dataset
* @param string $outputdir
* @param string $trainedmodeldir
* @return \stdClass
*/
public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
$outputdir, $trainedmodeldir) {
throw new \coding_exception('This predictor does not support regression yet.');
}
/**
* Exports the machine learning model.
*
* @throws \moodle_exception
* @param string $uniqueid The model unique id
* @param string $modeldir The directory that contains the trained model.
* @return string The path to the directory that contains the exported model.
*/
public function export(string $uniqueid, string $modeldir) : string {
$modelfilepath = $this->get_model_filepath($modeldir);
if (!file_exists($modelfilepath)) {
throw new \moodle_exception('errorexportmodelresult', 'analytics');
}
// We can use the actual $modeldir as the directory is not modified during export, just copied into a zip.
return $modeldir;
}
/**
* Imports the provided machine learning model.
*
* @param string $uniqueid The model unique id
* @param string $modeldir The directory that will contain the trained model.
* @param string $importdir The directory that contains the files to import.
* @return bool Success
*/
public function import(string $uniqueid, string $modeldir, string $importdir) : bool {
$importmodelfilepath = $this->get_model_filepath($importdir);
$modelfilepath = $this->get_model_filepath($modeldir);
$modelmanager = new ModelManager();
// Copied from ModelManager::restoreFromFile to validate the serialised contents
// before restoring them.
$importconfig = file_get_contents($importmodelfilepath);
// Clean stuff like function calls.
$importconfig = preg_replace('/[^a-zA-Z0-9\{\}%\.\*\;\,\:\"\-\0\\\]/', '', $importconfig);
$object = unserialize($importconfig,
['allowed_classes' => ['Phpml\\Classification\\Linear\\LogisticRegression']]);
if (!$object) {
return false;
}
if (get_class($object) == '__PHP_Incomplete_Class') {
return false;
}
$classifier = $modelmanager->restoreFromFile($importmodelfilepath);
// This would override any previous classifier.
$modelmanager->saveToFile($classifier, $modelfilepath);
return true;
}
/**
* Returns the path to the serialised model file in the provided directory.
*
* @param string $modeldir The model directory
* @return string The model file
*/
protected function get_model_filepath(string $modeldir) : string {
// Output directory is already unique to the model.
return $modeldir . DIRECTORY_SEPARATOR . self::MODEL_FILENAME;
}
/**
* Returns the Phi correlation coefficient.
*
* @param array $testlabels
* @param array $predictedlabels
* @return float
*/
protected function get_phi($testlabels, $predictedlabels) {
// Binary here only as well.
$matrix = \Phpml\Metric\ConfusionMatrix::compute($testlabels, $predictedlabels, array(0, 1));
$tptn = $matrix[0][0] * $matrix[1][1];
$fpfn = $matrix[1][0] * $matrix[0][1];
$tpfp = $matrix[0][0] + $matrix[1][0];
$tpfn = $matrix[0][0] + $matrix[0][1];
$tnfp = $matrix[1][1] + $matrix[1][0];
$tnfn = $matrix[1][1] + $matrix[0][1];
if ($tpfp === 0 || $tpfn === 0 || $tnfp === 0 || $tnfn === 0) {
$phi = 0;
} else {
$phi = ( $tptn - $fpfn ) / sqrt( $tpfp * $tpfn * $tnfp * $tnfn);
}
return $phi;
}
/**
* Extracts metadata from the dataset file.
*
* The file poiter should be located at the top of the file.
*
* @param resource $fh
* @return array
*/
protected function extract_metadata($fh) {
$metadata = fgetcsv($fh);
return array_combine($metadata, fgetcsv($fh));
}
}