You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
445 lines
14 KiB
445 lines
14 KiB
2 years ago
|
<?php
|
||
|
// This file is part of Moodle - http://moodle.org/
|
||
|
//
|
||
|
// Moodle is free software: you can redistribute it and/or modify
|
||
|
// it under the terms of the GNU General Public License as published by
|
||
|
// the Free Software Foundation, either version 3 of the License, or
|
||
|
// (at your option) any later version.
|
||
|
//
|
||
|
// Moodle is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License
|
||
|
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
/**
|
||
|
* Python predictions processor
|
||
|
*
|
||
|
* @package mlbackend_python
|
||
|
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
||
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
||
|
*/
|
||
|
|
||
|
namespace mlbackend_python;
|
||
|
|
||
|
defined('MOODLE_INTERNAL') || die();
|
||
|
|
||
|
/**
|
||
|
* Python predictions processor.
|
||
|
*
|
||
|
* @package mlbackend_python
|
||
|
* @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
|
||
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
||
|
*/
|
||
|
class processor implements \core_analytics\classifier, \core_analytics\regressor, \core_analytics\packable {
|
||
|
|
||
|
/**
|
||
|
* The required version of the python package that performs all calculations.
|
||
|
*/
|
||
|
const REQUIRED_PIP_PACKAGE_VERSION = '1.0.0';
|
||
|
|
||
|
/**
|
||
|
* The path to the Python bin.
|
||
|
*
|
||
|
* @var string
|
||
|
*/
|
||
|
protected $pathtopython;
|
||
|
|
||
|
/**
|
||
|
* The constructor.
|
||
|
*/
|
||
|
public function __construct() {
|
||
|
global $CFG;
|
||
|
|
||
|
// Set the python location if there is a value.
|
||
|
if (!empty($CFG->pathtopython)) {
|
||
|
$this->pathtopython = $CFG->pathtopython;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Is the plugin ready to be used?.
|
||
|
*
|
||
|
* @return bool|string Returns true on success, a string detailing the error otherwise
|
||
|
*/
|
||
|
public function is_ready() {
|
||
|
if (empty($this->pathtopython)) {
|
||
|
$settingurl = new \moodle_url('/admin/settings.php', array('section' => 'systempaths'));
|
||
|
return get_string('pythonpathnotdefined', 'mlbackend_python', $settingurl->out());
|
||
|
}
|
||
|
|
||
|
// Check the installed pip package version.
|
||
|
$cmd = "{$this->pathtopython} -m moodlemlbackend.version";
|
||
|
|
||
|
$output = null;
|
||
|
$exitcode = null;
|
||
|
// Execute it sending the standard error to $output.
|
||
|
$result = exec($cmd . ' 2>&1', $output, $exitcode);
|
||
|
|
||
|
$vercheck = self::check_pip_package_version($result);
|
||
|
|
||
|
if ($vercheck === 0) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if ($exitcode != 0) {
|
||
|
return get_string('pythonpackagenotinstalled', 'mlbackend_python', $cmd);
|
||
|
}
|
||
|
|
||
|
if ($result) {
|
||
|
$a = [
|
||
|
'installed' => $result,
|
||
|
'required' => self::REQUIRED_PIP_PACKAGE_VERSION,
|
||
|
];
|
||
|
|
||
|
if ($vercheck < 0) {
|
||
|
return get_string('packageinstalledshouldbe', 'mlbackend_python', $a);
|
||
|
|
||
|
} else if ($vercheck > 0) {
|
||
|
return get_string('packageinstalledtoohigh', 'mlbackend_python', $a);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return get_string('pythonpackagenotinstalled', 'mlbackend_python', $cmd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Delete the model version output directory.
|
||
|
*
|
||
|
* @param string $uniqueid
|
||
|
* @param string $modelversionoutputdir
|
||
|
* @return null
|
||
|
*/
|
||
|
public function clear_model($uniqueid, $modelversionoutputdir) {
|
||
|
remove_dir($modelversionoutputdir);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Delete the model output directory.
|
||
|
*
|
||
|
* @param string $modeloutputdir
|
||
|
* @return null
|
||
|
*/
|
||
|
public function delete_output_dir($modeloutputdir) {
|
||
|
remove_dir($modeloutputdir);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Trains a machine learning algorithm with the provided dataset.
|
||
|
*
|
||
|
* @param string $uniqueid
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function train_classification($uniqueid, \stored_file $dataset, $outputdir) {
|
||
|
|
||
|
// Obtain the physical route to the file.
|
||
|
$datasetpath = $this->get_file_path($dataset);
|
||
|
|
||
|
$cmd = "{$this->pathtopython} -m moodlemlbackend.training " .
|
||
|
escapeshellarg($uniqueid) . ' ' .
|
||
|
escapeshellarg($outputdir) . ' ' .
|
||
|
escapeshellarg($datasetpath);
|
||
|
|
||
|
if (!PHPUNIT_TEST && CLI_SCRIPT) {
|
||
|
debugging($cmd, DEBUG_DEVELOPER);
|
||
|
}
|
||
|
|
||
|
$output = null;
|
||
|
$exitcode = null;
|
||
|
$result = exec($cmd, $output, $exitcode);
|
||
|
|
||
|
if (!$result) {
|
||
|
throw new \moodle_exception('errornopredictresults', 'analytics');
|
||
|
}
|
||
|
|
||
|
if (!$resultobj = json_decode($result)) {
|
||
|
throw new \moodle_exception('errorpredictwrongformat', 'analytics', '', json_last_error_msg());
|
||
|
}
|
||
|
|
||
|
if ($exitcode != 0) {
|
||
|
if (!empty($resultobj->errors)) {
|
||
|
$errors = $resultobj->errors;
|
||
|
if (is_array($errors)) {
|
||
|
$errors = implode(', ', $errors);
|
||
|
}
|
||
|
} else if (!empty($resultobj->info)) {
|
||
|
// Show info if no errors are returned.
|
||
|
$errors = $resultobj->info;
|
||
|
if (is_array($errors)) {
|
||
|
$errors = implode(', ', $errors);
|
||
|
}
|
||
|
}
|
||
|
$resultobj->info = array(get_string('errorpredictionsprocessor', 'analytics', $errors));
|
||
|
}
|
||
|
|
||
|
return $resultobj;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Classifies the provided dataset samples.
|
||
|
*
|
||
|
* @param string $uniqueid
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function classify($uniqueid, \stored_file $dataset, $outputdir) {
|
||
|
|
||
|
// Obtain the physical route to the file.
|
||
|
$datasetpath = $this->get_file_path($dataset);
|
||
|
|
||
|
$cmd = "{$this->pathtopython} -m moodlemlbackend.prediction " .
|
||
|
escapeshellarg($uniqueid) . ' ' .
|
||
|
escapeshellarg($outputdir) . ' ' .
|
||
|
escapeshellarg($datasetpath);
|
||
|
|
||
|
if (!PHPUNIT_TEST && CLI_SCRIPT) {
|
||
|
debugging($cmd, DEBUG_DEVELOPER);
|
||
|
}
|
||
|
|
||
|
$output = null;
|
||
|
$exitcode = null;
|
||
|
$result = exec($cmd, $output, $exitcode);
|
||
|
|
||
|
if (!$result) {
|
||
|
throw new \moodle_exception('errornopredictresults', 'analytics');
|
||
|
}
|
||
|
|
||
|
if (!$resultobj = json_decode($result)) {
|
||
|
throw new \moodle_exception('errorpredictwrongformat', 'analytics', '', json_last_error_msg());
|
||
|
}
|
||
|
|
||
|
if ($exitcode != 0) {
|
||
|
if (!empty($resultobj->errors)) {
|
||
|
$errors = $resultobj->errors;
|
||
|
if (is_array($errors)) {
|
||
|
$errors = implode(', ', $errors);
|
||
|
}
|
||
|
} else if (!empty($resultobj->info)) {
|
||
|
// Show info if no errors are returned.
|
||
|
$errors = $resultobj->info;
|
||
|
if (is_array($errors)) {
|
||
|
$errors = implode(', ', $errors);
|
||
|
}
|
||
|
}
|
||
|
$resultobj->info = array(get_string('errorpredictionsprocessor', 'analytics', $errors));
|
||
|
}
|
||
|
|
||
|
return $resultobj;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Evaluates this processor classification model using the provided supervised learning dataset.
|
||
|
*
|
||
|
* @param string $uniqueid
|
||
|
* @param float $maxdeviation
|
||
|
* @param int $niterations
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @param string $trainedmodeldir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function evaluate_classification($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
|
||
|
$outputdir, $trainedmodeldir) {
|
||
|
|
||
|
// Obtain the physical route to the file.
|
||
|
$datasetpath = $this->get_file_path($dataset);
|
||
|
|
||
|
$cmd = "{$this->pathtopython} -m moodlemlbackend.evaluation " .
|
||
|
escapeshellarg($uniqueid) . ' ' .
|
||
|
escapeshellarg($outputdir) . ' ' .
|
||
|
escapeshellarg($datasetpath) . ' ' .
|
||
|
escapeshellarg(\core_analytics\model::MIN_SCORE) . ' ' .
|
||
|
escapeshellarg($maxdeviation) . ' ' .
|
||
|
escapeshellarg($niterations);
|
||
|
|
||
|
if ($trainedmodeldir) {
|
||
|
$cmd .= ' ' . escapeshellarg($trainedmodeldir);
|
||
|
}
|
||
|
|
||
|
if (!PHPUNIT_TEST && CLI_SCRIPT) {
|
||
|
debugging($cmd, DEBUG_DEVELOPER);
|
||
|
}
|
||
|
|
||
|
$output = null;
|
||
|
$exitcode = null;
|
||
|
$result = exec($cmd, $output, $exitcode);
|
||
|
|
||
|
if (!$result) {
|
||
|
throw new \moodle_exception('errornopredictresults', 'analytics');
|
||
|
}
|
||
|
|
||
|
if (!$resultobj = json_decode($result)) {
|
||
|
throw new \moodle_exception('errorpredictwrongformat', 'analytics', '', json_last_error_msg());
|
||
|
}
|
||
|
|
||
|
return $resultobj;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Exports the machine learning model.
|
||
|
*
|
||
|
* @throws \moodle_exception
|
||
|
* @param string $uniqueid The model unique id
|
||
|
* @param string $modeldir The directory that contains the trained model.
|
||
|
* @return string The path to the directory that contains the exported model.
|
||
|
*/
|
||
|
public function export(string $uniqueid, string $modeldir) : string {
|
||
|
|
||
|
// We include an exporttmpdir as we want to be sure that the file is not deleted after the
|
||
|
// python process finishes.
|
||
|
$exporttmpdir = make_request_directory('mlbackend_python_export');
|
||
|
|
||
|
$cmd = "{$this->pathtopython} -m moodlemlbackend.export " .
|
||
|
escapeshellarg($uniqueid) . ' ' .
|
||
|
escapeshellarg($modeldir) . ' ' .
|
||
|
escapeshellarg($exporttmpdir);
|
||
|
|
||
|
if (!PHPUNIT_TEST && CLI_SCRIPT) {
|
||
|
debugging($cmd, DEBUG_DEVELOPER);
|
||
|
}
|
||
|
|
||
|
$output = null;
|
||
|
$exitcode = null;
|
||
|
$exportdir = exec($cmd, $output, $exitcode);
|
||
|
|
||
|
if ($exitcode != 0) {
|
||
|
throw new \moodle_exception('errorexportmodelresult', 'analytics');
|
||
|
}
|
||
|
|
||
|
if (!$exportdir) {
|
||
|
throw new \moodle_exception('errorexportmodelresult', 'analytics');
|
||
|
}
|
||
|
|
||
|
return $exportdir;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Imports the provided machine learning model.
|
||
|
*
|
||
|
* @param string $uniqueid The model unique id
|
||
|
* @param string $modeldir The directory that will contain the trained model.
|
||
|
* @param string $importdir The directory that contains the files to import.
|
||
|
* @return bool Success
|
||
|
*/
|
||
|
public function import(string $uniqueid, string $modeldir, string $importdir) : bool {
|
||
|
|
||
|
$cmd = "{$this->pathtopython} -m moodlemlbackend.import " .
|
||
|
escapeshellarg($uniqueid) . ' ' .
|
||
|
escapeshellarg($modeldir) . ' ' .
|
||
|
escapeshellarg($importdir);
|
||
|
|
||
|
if (!PHPUNIT_TEST && CLI_SCRIPT) {
|
||
|
debugging($cmd, DEBUG_DEVELOPER);
|
||
|
}
|
||
|
|
||
|
$output = null;
|
||
|
$exitcode = null;
|
||
|
$success = exec($cmd, $output, $exitcode);
|
||
|
|
||
|
if ($exitcode != 0) {
|
||
|
throw new \moodle_exception('errorimportmodelresult', 'analytics');
|
||
|
}
|
||
|
|
||
|
if (!$success) {
|
||
|
throw new \moodle_exception('errorimportmodelresult', 'analytics');
|
||
|
}
|
||
|
|
||
|
return $success;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Train this processor regression model using the provided supervised learning dataset.
|
||
|
*
|
||
|
* @throws new \coding_exception
|
||
|
* @param string $uniqueid
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function train_regression($uniqueid, \stored_file $dataset, $outputdir) {
|
||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Estimates linear values for the provided dataset samples.
|
||
|
*
|
||
|
* @throws new \coding_exception
|
||
|
* @param string $uniqueid
|
||
|
* @param \stored_file $dataset
|
||
|
* @param mixed $outputdir
|
||
|
* @return void
|
||
|
*/
|
||
|
public function estimate($uniqueid, \stored_file $dataset, $outputdir) {
|
||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Evaluates this processor regression model using the provided supervised learning dataset.
|
||
|
*
|
||
|
* @throws new \coding_exception
|
||
|
* @param string $uniqueid
|
||
|
* @param float $maxdeviation
|
||
|
* @param int $niterations
|
||
|
* @param \stored_file $dataset
|
||
|
* @param string $outputdir
|
||
|
* @param string $trainedmodeldir
|
||
|
* @return \stdClass
|
||
|
*/
|
||
|
public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file $dataset,
|
||
|
$outputdir, $trainedmodeldir) {
|
||
|
throw new \coding_exception('This predictor does not support regression yet.');
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the path to the dataset file.
|
||
|
*
|
||
|
* @param \stored_file $file
|
||
|
* @return string
|
||
|
*/
|
||
|
protected function get_file_path(\stored_file $file) {
|
||
|
// From moodle filesystem to the local file system.
|
||
|
// This is not ideal, but there is no read access to moodle filesystem files.
|
||
|
return $file->copy_content_to_temp('core_analytics');
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Check that the given package version can be used and return the error status.
|
||
|
*
|
||
|
* When evaluating the version, we assume the sematic versioning scheme as described at
|
||
|
* https://semver.org/.
|
||
|
*
|
||
|
* @param string $actual The actual Python package version
|
||
|
* @param string $required The required version of the package
|
||
|
* @return int -1 = actual version is too low, 1 = actual version too high, 0 = actual version is ok
|
||
|
*/
|
||
|
public static function check_pip_package_version($actual, $required = self::REQUIRED_PIP_PACKAGE_VERSION) {
|
||
|
|
||
|
if (empty($actual)) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (version_compare($actual, $required, '<')) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
$parts = explode('.', $required);
|
||
|
$requiredapiver = reset($parts);
|
||
|
|
||
|
$parts = explode('.', $actual);
|
||
|
$actualapiver = reset($parts);
|
||
|
|
||
|
if ($requiredapiver > 0 || $actualapiver > 1) {
|
||
|
if (version_compare($actual, $requiredapiver + 1, '>=')) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
}
|