You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
147 lines
4.1 KiB
147 lines
4.1 KiB
<?php
|
|
// This file is part of Moodle - http://moodle.org/
|
|
//
|
|
// Moodle is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Moodle is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
/**
|
|
* Abstract linear indicator.
|
|
*
|
|
* @package core_analytics
|
|
* @copyright 2017 David Monllao {@link http://www.davidmonllao.com}
|
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
|
*/
|
|
|
|
namespace core_analytics\local\indicator;
|
|
|
|
defined('MOODLE_INTERNAL') || die();
|
|
|
|
/**
|
|
* Abstract linear indicator.
|
|
*
|
|
* @package core_analytics
|
|
* @copyright 2017 David Monllao {@link http://www.davidmonllao.com}
|
|
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
|
|
*/
|
|
abstract class linear extends base {
|
|
|
|
/**
|
|
* Set to false to avoid context features to be added as dataset features.
|
|
*
|
|
* @return bool
|
|
*/
|
|
protected static function include_averages() {
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* get_feature_headers
|
|
*
|
|
* @return array
|
|
*/
|
|
public static function get_feature_headers() {
|
|
|
|
$fullclassname = '\\' . get_called_class();
|
|
|
|
if (static::include_averages()) {
|
|
// The calculated value + context indicators.
|
|
$headers = array($fullclassname, $fullclassname . '/mean');
|
|
} else {
|
|
$headers = array($fullclassname);
|
|
}
|
|
return $headers;
|
|
}
|
|
|
|
/**
|
|
* Show only the main feature.
|
|
*
|
|
* @param float $value
|
|
* @param string $subtype
|
|
* @return bool
|
|
*/
|
|
public function should_be_displayed($value, $subtype) {
|
|
if ($subtype != false) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* get_display_value
|
|
*
|
|
* @param float $value
|
|
* @param string $subtype
|
|
* @return string
|
|
*/
|
|
public function get_display_value($value, $subtype = false) {
|
|
$diff = static::get_max_value() - static::get_min_value();
|
|
return round(100 * ($value - static::get_min_value()) / $diff) . '%';
|
|
}
|
|
|
|
/**
|
|
* get_calculation_outcome
|
|
*
|
|
* @param float $value
|
|
* @param string $subtype
|
|
* @return int
|
|
*/
|
|
public function get_calculation_outcome($value, $subtype = false) {
|
|
if ($value < 0) {
|
|
return self::OUTCOME_NEGATIVE;
|
|
} else {
|
|
return self::OUTCOME_OK;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Converts the calculated values to a list of features for the dataset.
|
|
*
|
|
* @param array $calculatedvalues
|
|
* @return array
|
|
*/
|
|
protected function to_features($calculatedvalues) {
|
|
|
|
// Null mean if all calculated values are null.
|
|
$nullmean = true;
|
|
foreach ($calculatedvalues as $value) {
|
|
if (!is_null($value)) {
|
|
// Early break, we don't want to spend a lot of time here.
|
|
$nullmean = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ($nullmean) {
|
|
$mean = null;
|
|
} else {
|
|
$mean = round(array_sum($calculatedvalues) / count($calculatedvalues), 2);
|
|
}
|
|
|
|
foreach ($calculatedvalues as $sampleid => $calculatedvalue) {
|
|
|
|
if (!is_null($calculatedvalue)) {
|
|
$calculatedvalue = round($calculatedvalue, 2);
|
|
}
|
|
|
|
if (static::include_averages()) {
|
|
$calculatedvalues[$sampleid] = array($calculatedvalue, $mean);
|
|
} else {
|
|
// Basically just convert the scalar to an array of scalars with a single value.
|
|
$calculatedvalues[$sampleid] = array($calculatedvalue);
|
|
}
|
|
}
|
|
|
|
// Returns each sample as an array of values, appending the mean to the calculated value.
|
|
return $calculatedvalues;
|
|
}
|
|
}
|
|
|